文章摘要
镍污染场地抽出-处理数值模拟及渗透系数对修复效果的影响研究
Numerical simulation of nickel contaminated site extraction treatment and study on the influence of permeability coefficient on remediation effectiveness
投稿时间:2023-12-06  修订日期:2024-01-08
DOI:
中文关键词: 抽出-处理  渗透系数  数值模拟  修复效果
英文关键词: Pump and treat  Permeability coefficient  Numerical simulation  Repair effect
基金项目:国家重点研发计划(2022YFC3702300);国家自然科学基金(52309079);中国环境科学研究院国家环境保护河口与海岸带环境重点实验室开放基金(HKHA2022012)
作者单位
南瑞川 大连理工大学 
柏晓鹏 大连理工大学 
张婷婷 大连理工大学 
闫晓惠* 大连理工大学 
摘要点击次数: 38
全文下载次数: 0
中文摘要:
      为研究污染场地的渗透系数对抽出-处理效果的影响,以某镍(Ni)污染场地为例,构建了二维均质非稳定地下水流模型,并基于该模型进行考虑溶质对流、弥散、吸附的抽出-处理模拟,研究了不同含水介质及抽水量对修复效果的影响。结果表明:○1水动力模型模拟结果与场地实测地下水水位基本吻合,均方根误差RMSE = 0.006 m,模型可以较好刻画场地地下水流场。○2通过对比三处抽水井位置下Ni的修复效果,认为三个方案中抽水井位于污染羽中心的方案最佳。○3在相同抽水流量下,渗透系数越大,GW1处Ni浓度越高,GW2处Ni浓度越低,但污染羽面积也越大。当含水层为黄土或粉砂时,若抽水流量为40 m3/d,GW1和GW2两处Ni浓度无法降低至0.1 mg/L,若抽水流量为80 m3/d或120 m3/d,则GW1和GW2两处三年内Ni浓度可以降低至0.1 mg/L。当含水层为细砂时,GW1处Ni浓度在三种抽水流量场景下均无法降低至0.1 mg/L,而GW2处Ni浓度在三年内均能满足地下水IV类水质标准。○4相同水文地质条件下,抽水流量越大,达到地下水IV类水质标准的时间越短,但总抽水量越大。研究结果可为污染场地地下水的抽出-处理实施的可行性提供一定的科学依据。
英文摘要:
      To study the influence of permeability coefficients on the pump and treat effectiveness in contaminated sites, a two-dimensional homogeneous and unsteady groundwater flow model was constructed using a nickel (Ni) contaminated site as an example. The model considered solute advection, dispersion, and adsorption in simulating the pump and treat process to study the impact of different aquifer media and pumping rates on remediation outcomes. Results indicate: ○1Hydrodynamic model simulations closely matched the observed groundwater levels at the site, with a root mean square error (RMSE) of 0.006 meters, demonstrating the model's ability to depict the groundwater flow field at the site effectively. ○2Comparative analysis of the remediation effects of Ni at three pumping well locations suggests that the scheme positioning the pumping well at the center of the contaminant plume is the most optimal among the three. ○3With the same pumping rate, higher permeability coefficients correspond to higher Ni concentrations at GW1, lower concentrations at GW2, yet with a larger contaminated plume area. For aquifers of loess or fine sand, if the pumping rate is 40 m3/d, Ni concentrations at GW1 and GW2 cannot be reduced to 0.1 mg/L. However, at pumping rates of 80 m3/d or 120 m3/d, Ni concentrations at both GW1 and GW2 can reach 0.1 mg/L within three years. In the case of a fine sand aquifer, GW1 Ni concentrations cannot reach 0.1 mg/L under any of the three pumping scenarios, while GW2 concentrations can meet groundwater quality standards for Class IV water within three years. ○4Under similar hydrogeological conditions, higher pumping rates lead to a shorter duration to achieve Class IV groundwater quality standards, but result in a larger total volume of pumped water. The research findings provide scientific insights into the feasibility of implementing pump and treatment methods for remediating groundwater in contaminated sites.
View Fulltext   查看/发表评论  下载PDF阅读器
关闭